

Bloom Computer Olympiad Sample Paper

Maximum Time : 60 Minutes Maximum Marks : 60

INSTRUCTIONS

1. There are 50 Multiple Choice Questions in this paper divided into two sections.

Section A 40 MCQs; 1 Mark each

Section B 10 MCQs; 2 Marks each

- 2. Each question has Four Options out of which **ONLY ONE** is correct.
- 3. All questions are compulsory.
- 4. There is no negative marking.
- 5. No electric device capable of storing and displaying visual information such as calculator and mobile is allowed during the course of the exam.

Roll No.							
Student's Name							
Staucht 3 Name							

Section-A (1 Mark each)

7.	A screen covered	with a fine layer of pho	sphorescent elemer	nt is
	(a) CRT		(b) LCD	
	(c) LED		(d) TFT	
2.	Which of the follo (a) Interactive mode (c) Hybrid mode	owing is not the mode o	of interacting with Py (b) Script mode (d) None of these	ython?
<i>3</i> .	Which of the follo (a) Application pro (c) Logical program	•	rare programs? (b) Replicate programus (d) Both (a) and (b)	ms
4.	Name of the func (a) length() (c) strlen()	ction which is used to fi	nd length of string. (b) len() (d) slen()	
<i>5</i> .	Which technique I/O devices busy? (a) Time sharing (c) Preemptive sch		se a single job could (b) Spooling (d) Multiprogrammir	keep both the CPU and the
6.	Which of the follo (a) L.insert(3, 7) (c) L.add(3, 7)	owing command will in	sert 7 in third positio (b) L.insert(2, 7) (d) L.append(3, 7)	n of List L?
7.	is the de (a) 53.8125 (c) 50.8125	ecimal equivalent of the	binary number 11010 (b) 53.8145 (d) 50.8145	01.1101.
8.		of the following code. ","Ashish","Sumanta") mit")+4//3**2) (b) 4	(c) 1	(d) 3
9.	According to Boo	olean law A''= (b) A	(c) A"	(d) 1
10.	•	dictionaries "D1" and "I n D1. As a friend of Anuj,		on he wants to add all the e code.

<i>77.</i>	In MS Excelfea	ature makes it eas		e data to a worksheet.
	(a) AutoSum (c) Filter		(b) Sort(d) AutoComplete	
12.	. ,	is not a function/		dom module in Python?
13.	Which layer of the TCP (a) Host to host (c) Internet	/ IP stack corresp	onds to the OSI mo (b) Application (d) Network access	
14.	A service that allows a (a) Telnet (c) E-mail	user to log in into	another computer (b) FTP (d) Usenet	somewhere on the Internet
15.	Inprinters cha (a) Line printer (c) Daisy wheel printer	racters are fully fo	ormed on the petals (b) Drum printer (d) Dot matrix print	
16.	What will be the data t A = '101'	type of the followi		
	(a) Integer (c) Float		(b) String(d) Character	
<i>17</i> .	What could be the ma: (a) 8 (c) 5	ximum value of a	single digit in an oo (b) 6 (d) 7	ctal number system?
18.	>>>chr(97) will return			
	(a) A (b) a		(c) B	(d) b
19.	An optimal scheduling given set of processes	_	ns of minimising th	e average waiting time of a
	(a) FCFS scheduling algorithms (c) Shortest job first sch	orithm	• •	heduling algorithm ing algorithm
20.	Write the output of the	e following code.		
	L1 = [1, 2, 3, 4, 5] L2 = [9, 8, 7, 6, 5]			
	S= [L1+ 3 for L1 in L2]			
	print(S)			
	(a) [12, 11, 10, 9, 8] (c) [4, 5, 6, 7, 8]		(b) [1, 2, 3, 4, 5, 6, 7, 6] (d) Error	8, 9]

21. $(0.875)_{10} = (?)_8$ (a) 0.8 (b) 0.7 (c) 0.6(d) 0.5 **22.** Write the output of the following code. a=("Amita", "How", "are", "you", "a") for i in range(len(a)): if(a[i]=="a"): print(a[i]) (a) Hello (b) How (c) a (d) you 23. In Boolean algebra, $(A \cdot A) + A = ?$ (c) \overline{A} (a) A (b) 0 (d) 1 24. Dhirta wants to create a dictionary with "Jan", "Feb", "Mar" as key and 31, 28, 31 as values respectively. Help her to write the correct code. (a) D={"Jan": 31, "Feb ": 28, "Mar": 31} (b) D=["Jan":31, "Feb":28, "Mar":31] (c) D = {"Jan"; 31, "Feb"; 28, "Mar"; 31} (d) D=("Jan":31, "Feb":28, "Mar":31) 25. Where can you find the horizontal split bar on MS Word screen? (a) On the left of horizontal scroll bar (b) On the right of horizontal scroll bar (c) On the top of vertical scroll bar (d) On the bottom of vertical scroll bar **26.** Which Python library is a collection of modules? (a) Python Standard Library (b) Matplotlib (c) Pandas Library (d) NumPy Library 27. In specific, if the systems use separate protocols, which one of the following devices is used to link two systems? (a) Repeater (b) Gateway (d) Hub (c) Bridge

- 28. Which of the following is true with regard to the ping command?
 - (a) Ping stands for Packet Internet Generator.
 - (b) The ping command checks the port level connectivity between source destinations end points.
 - (c) Ping summarizes the packet loss and round-trip delay between two IP end points.
 - (d) The ping command activates the RARP protocol of the IP layer.

The clarity of image depends on some fa (a) Resolution of screen (c) Refresh rate	factors which is not a correct factor? (b) Dot rate (d) None of these						
Smallest element of the Python coding is (a) Identifiers (c) Keywords	s called (b) Token (d) Delimiters						
Specialized program that allows the user (a) Logical programs (b) Application programs (c) Relative programs (d) Replicate programs	to utilize in specific application is classified as						
Write the output of the following code. a = "Welcome to \"my\"blog" print(a) (a) Welcome to "my" blog	(b) welcome to \ "my\" blog						
	(d) None of theseEDF algorithm works on(b) dynamic priorities(d) FIFO scheduling						
System in which fractions are written by (a) Fixed - point representation (b) Floating - point representation (c) Binary digits representation (d) Single rotation representation	extending binary rotation is called						
Which of the following statement will ge L = [1, 2, 3, 4, 5] (a) $[x ** 2 \text{ for } x \text{ in } L]$ (c) $[x \wedge 3 \text{ for } x \text{ in } L]$	(b) [x * 2 for x in L] (d) None of these						
Write the output of the following code. a="blog" b=list(a) c=tuple(b) print(c) (a) Error (c) ('b', 'l', 'o', 'g')	(b) ['b', 'l', 'o', 'g'] (d) (blog)						
	Smallest element of the Python coding is (a) Identifiers (c) Keywords Specialized program that allows the user (a) Logical programs (b) Application programs (c) Relative programs (d) Replicate programs Write the output of the following code. a = "Welcome to \"my\"blog" print(a) (a) Welcome to "my" blog (c) Error RMA works on static priorities while the last starvation (c) RR scheduling System in which fractions are written by (a) Fixed - point representation (b) Floating - point representation (c) Binary digits representation (d) Single rotation representation Which of the following statement will get L = [1, 2, 3, 4, 5] (a) [x ** 2 for x in L] (c) [x ^ 3 for x in L] Write the output of the following code. a="blog" b=list(a) c=tuple(b) print(c) (a) Error						

- 37. Boolean algebra obeys
 - (a) Commutative law only
 - (b) Distributive law only
 - (c) Associative law only
 - (d) Associative, distributive and commutative law
- 38. Write the output of the following code.

D={1: ['Amit',23,21], 2: ['Suman',45,34], 3: 'Ravi', 4: 'Anuj'} print("Amit" in D)

(a) True

(b) False

(c) Error

- (d) None of these
- 39. The process of removing unwanted part of an image is called
 - (a) Hiding
- (b) Bordering
- (c) Cropping
- (d) Cutting

- **40.** What is the correct syntax for shuffle()?
 - (a) random.shuffle.list

(b) random.shuffle(list)

(c) random (shuffle.list)

(d) random.list(shuffle)

Section-B (2 Marks each)

41. Match the following lists.

_	
List I	List II
A. Flatware	1. Hardware
B. Microprocessor	2. Integrated Circuit
C. Tailor Made	3. Solid – State Drive
D. Tangible Component	4. L1 Cache Memory
E. Internal Component of CPU	5. Customized Application

Codes

	Α	В	С	D	Ε
(a)	3	5	2	4	1
(b)	2	5	1	4	3
(c)	3	4	2	5	1
(d)	2	3	5	1	4

- **42.** Which of the statement is correct with regard to Time Division Multiplexing (TDM) and its variants?
 - I. Statistical TDM makes efficient use of the bandwidth only if the arrival pattern of the data stream is probabilistic.
 - II. TDM requires the transmitter and receiver to be synchronized periodically.
 - (a) Only I

(b) Only II

(c) Both I and II

(d) Neither I nor II

43. Which of the following is/are true for the Boolean variables P, Q and R?

Let # be a binary operator defined as

X # Y = X' + Y' where X and Y are Boolean variables.

Consider the following two statements.

I.
$$(P \neq Q) \neq R = P \neq (Q \neq R)$$

II.
$$Q \neq R = R \neq Q$$

(a) Only I

(b) Only II

(c) Both I and II

- (d) Neither I nor II
- 44. Which of the following statement(s) is/are correct?
 - I. When there is no data in the adjacent cells, long text flows into adjacent cells on a worksheet.
 - II. We can select a single range of cells by dragging cursor over the desired cells.
 - (a) Only I

(b) Only II

(c) Both I and II

(d) Neither I nor II

- **45.** C3D7 + $(746)_8$ = $(?)_{10}$
 - (a) 50620

(b) 50621

(c) 50135

- (d) 50486
- **46.** Which of the following statement(s) is/are correct?
 - I. Internet access by transmitting digital data over the wires of a local telephone network is provided by digital signal line.
 - II. ARPANET was opened for many purposes such as educational fields, business, etc across different countries and then became known as the Internet.
 - (a) Only I

(b) Only II

(c) Both I and II

- (d) Neither I nor II
- **47.** Which of the following statement(s) is/are correct?
 - I. Python support dynamic typing.
 - II. Python is based on ABC language.
 - (a) Only I

(b) Only II

(c) Both I and II

- (d) Neither I nor II
- **48.** Select the wrong option in reference to the statement given below.

(operand1)*(operand2) = No error

- (a) Both operands can be of type integer.
- (b) Operand1 can be of type integer and operand2 can be of type string.
- (c) Operand1 can be of type string and operand2 can be of type integer.
- (d) Both operands can be of type string.

49. Match the following lists.

List I	List II
A. Add the element	1. Slicing
B. Internal Component of CPU	2. append ()
C. Traversing a list	3. random ()
D. Shuffle the list	4. loop ()

Codes

- в с Α D (a) 3 1 2 4 (b) 2 3 1 4 2 (c) 3 4 1 (d) 2 4 3 1
- 50. Write the output of the following code.

a=("Amit", "Sumit", "Ashish", "Sumanta")

for i in a:

print(len(i)**2)

- (a) 0
 - 1
 - 4
 - 9
- (b) 16
 - 25
 - 36
 - 49
- (c) 1
 - 4
 - 9
 - 16
- (d) None of the above

OMR SHEET

1	a	b	C	d	2	a	b	C	d	3	a	b	С	d	4	a	b	C	d
5	a	b	C	\bigcirc	6	a	b	C	\bigcirc	7	a	b	C	d	8	a	b	C	d
9	a	b	C	\bigcirc	10	a	b	С	\bigcirc	11	a	b	С	\bigcirc	12	a	b	С	d
13	a	b	C	\bigcirc	14	a	b	С	\bigcirc	15	a	b	С	\bigcirc	16	a	b	С	d
17	a	b	C	\bigcirc	18	a	b	С	\bigcirc	19	a	b	С	\bigcirc	20	a	b	С	d
21	a	b	C	\bigcirc	22	a	b	С	\bigcirc	23	a	b	С	\bigcirc	24	a	b	С	d
25	a	b	C	\bigcirc	26	a	b	С	\bigcirc	27	a	b	С	d	28	a	b	С	d
29	a	b	C	\bigcirc	30	a	b	C	$\bigcirc \hspace{-0.1cm} \hspace{0.1cm} 0.1cm$	31	a	b	C	$\bigcirc \hspace{-0.05cm} d$	32	a	b	C	\bigcirc
33	a	b	C	\bigcirc	34	a	b	C	\bigcirc	35	a	b	C	\bigcirc	36	a	b	C	d
37	a	b	С	d	38	a	b	C	d	39	a	b	C	d	40	a	b	C	d
41	a	b	C	\bigcirc	42	a	b	C	\bigcirc	43	a	b	C	\bigcirc	44	a	b	C	d
45	a	b	С	d	46	a	b	С	\bigcirc d	47	a	b	C	d	48	a	b	C	d
49	a	b	С	d	50	a	b	С	d										

Answers

- 1. (a) CRT
- 2. (c) Hybrid mode
- **3.** (d) Both (a) and (b)
- 4. (b) len()
- 5. (d) Multiprogramming
- 6. (b) L.insert(2, 7)
- **7.** (a) 53.8125
- **8.** (c) 1
- **9.** (b) A
- 10. (a) D1.update(D2)
- 11. (d) Auto Complete
- 12. (a) randfloat ()
- 13. (a) Host to host
- **14.** (a) Telnet
- 15. (c) Daisy wheel printer
- 16. (b) String
- **17.** (d) 7
- **18.** (b) a
- 19. (c) Shortest job first scheduling algorithm
- **20.** (a) [12, 11, 10, 9, 8]
- **21.** (b) 0.7

- **22.** (c) a
- 23. (a) A
- **24.** (a) D={"Jan": 31, "Feb ": 28, "Mar": 31}
- 25. (c) On the top of vertical scroll bar
- 26. (a) Python Standard Library
- **27.** (b) Gateway
- 28. (c) Ping Summarizes the packet loss and round-trip delay between two IP end points.
- **29.** (b) Dot rate
- **30.** (b) Token
- 31. (b) Application programs
- 32. (a) Welcome to "my" blog
- 33. (c) RR scheduling
- 34. (a) Fixed-point representation
- **35.** (a) [x**2 for x in L]
- **36.** (c) ('b', 'l', 'o', 'g')
- 37. (d) Associative, distributive and commutative law
- **38.** (b) False
- 39. (c) Cropping
- **40.** (b) random.shuffle(list)
- **41.** (d) 23514
- 42. (c) Both I and II
- 43. (b) Only II
- 44. (c) Both I and II
- **45.** (b) 50621
- **46.** (b) Only II
- 47. (c) Both I and II
- 48. (d) Both operands can be of type string.
- **49.** (d) 2143
- **50.** (b) 16

25

36

49