

Bloom Mathematics Olympiad Sample Paper

Maximum Time: 60 Minutes Maximum Marks: 60

INSTRUCTIONS

1. There are 50 Multiple Choice Questions in this paper divided into two sections :

Section A 40 MCQs; 1 Mark each

Section B 10 MCQs; 2 Marks each

- 2. Each question has Four Options out of which **ONLY ONE** is correct.
- 3. All questions are compulsory.
- 4. There is no negative marking.
- 5. No electric device capable of storing and displaying visual information such as calculator and mobile is allowed during the course of the exam.

Roll No.							
Student's Name							
Student's Name							

Section-A (1 Mark each)

1.		ts and Set <i>B</i> has <i>n</i> ele number of subsets o		umber of subsets of <i>A</i> is 112 im · <i>n</i> is
	(a) 28	(b) 112	(c) 7	(d) 4
	families buy newspa	A and C. If 2% familiency A only, is	es buy newspaper C,	y newspaper <i>A</i> , 20% 5% buy <i>A</i> and <i>B</i> , 3% buy wspapers, then the number (d) 500
_	. ,			. ,
		$X: X^5 - 6X^4 + 11X^3 - 6X$		(+ 6 = 0) and
	$B = \{X : X^{-} - 3X + 2 = 0\}$ (a) \{1, 3\}	0}. Then, $(A \cap B)'$ is eq (b) {1, 2, 3}		(d) {0, 1, 2, 3}
4.	The set of all real x s	atisfying the inequal	ity $\frac{3- x }{4- x } > 0$	
	(a) $[-3, 3] \cup (-\infty, -4) \cup$ (c) $(-\infty, -3) \cup (4, \infty)$	• •	(b) $(-\infty, -4) \cup (4, \infty)$ (d) $(-3, 3) \cup (4, \infty)$	
5.	The largest interval	for which $x^{12} - x^9 + x$	$x^4 - x + 1 > 0$ is	
	(a) $-4 < x < 0$	(b) $0 < x < 1$	(c) $-100 < x < 100$	(d) $-\infty < x < \infty$
6.	$Iflog_{10}(x^3 + y^3) - log$	$J_{10}(x^2 + y^2 - xy) \le 2, t$	hen the maximum v	alue of xy , $\forall x \ge 0$, $y \ge 0$ is
	(a) 2500	(b) 3000	(c) 1200	(d) 3500
7 .	•	lments are paid, he die	•	Ilments which are in AP. f the debt unpaid.
	(a) ₹ 55 (c) ₹ 65		(d) None of these	
8.	The sum of the integ	gers from 1 to 100 wh	ich are not divisible l	oy 3 or 5 is
	(a) 2489	(b) 4735	(c) 2317	(d) 2632
9.	In a GP, first term is	1. If $4T_2 + 5T_3$ is minin	num, then its commo	on ratio is
	(a) $\frac{2}{5}$	(b) $-\frac{2}{5}$	(c) $\frac{3}{5}$	(d) $-\frac{3}{5}$
	$5x^4 + 4x^3 + 3x^2 + Mx$	•	e polynomial $x^2 + 1$, the	hat, when the polynomial ne remainder is 0. If <i>M</i> and

(c) 6

(d) 2

(b) -2

(a) -6

77.	z_1 and z_2 are two co z_1 is equal to	mplex numbers sucl	that $ z_1 = z_2 $ and	$arg(z_1) + arg(z_2) = \pi$, then
	(a) $2\overline{z}_2$	(b) \overline{z}_2	(c) $-\overline{z}_2$	(d) None of these
12.	If $i = \sqrt{-1}$, then $4 + 5$	$\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{334}-3\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{334}$	$i\frac{\sqrt{3}}{2}$ is equal to	
	(a) $1 - i\sqrt{3}$	(b) $-1 + i\sqrt{3}$	(c) 4√3 <i>i</i>	(d) $-i\sqrt{3}$
13.	arranged in a line su		ngement P_1 must occ	s, 5 persons are to be cur whereas P_4 and P_5 do
	(a) 4210	(b) 4200	(c) 4203	(d) 4205
14.	the number of ways	in which hall can be	e illuminated.	ed on independently. Find
	(a) $2^{10} - 2$	(b) $2^{10} - 1$	(c) $2^{10} + 1$	(d) None of these
15.	two groups, each co	ontaining 6 questions	s. He is not permitted	ions, which are divided into I to attempt more than ways of doing questions. (d) 782
16.	If $A = \{x : x^2 - 5x + 6\}$	$= 0$, $B = \{2, 4\}$, $C = \{4, 5\}$	5), then $A \times (B \cap C)$ is	
	(a) {(2, 4), (3, 4)} (c) {(2, 4), (3, 4), (4, 4)}		(b) {(4, 2), (4, 3)} (d) {(2, 2), (3, 3), (4, 4),	(5, 5)}
<i>17</i> .	If the coefficient of sthen $2n^2 - 9n$ is equ		ırth terms in the exp	ansion of $(1+x)^{2n}$ are in AP,
	(a) -7	(b) 7	(c) 6	(d) -6
18.	The digit at the unit	place in the numbe	$19^{2005} + 11^{2005} - 9^{2005}$ i	S
	(a) 2	(b) 1	(c) O	(d) 8
19.	The middle term in	the expansion of x^2	$+\frac{1}{x^2}+2$) ⁿ , is	
	(a) $\frac{n!}{((n/2)!)^2}$		(b) $\frac{(2n)!}{((n/2)!)^2}$	
	(c) $\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{n!} \cdot 2^{n}$	n	$(d) \frac{1 \cdot 3 \cdot 5 \cdots (2n+1)}{n!} \cdot 2^{n}$	n
20.	If $\cos A = m \cos B$ and	$d\cot\frac{A+B}{2} = \lambda \tan\frac{B}{2}$	$\frac{A}{2}$, then λ is	
	(a) $\frac{m}{m-1}$	(b) $\frac{m+1}{m}$	(c) $\frac{m+1}{m-1}$	(d) None of these

21.	The number of solu	tions of the equation	$x + 2\tan x = \frac{\pi}{2}$ in the	interval [0, 2π] is					
	(a) 3	(b) 4	(c) 2	(d) 5					
22.	In a $\triangle ABC$, $\angle C = 60^{\circ}$,	then $\frac{1}{a+c} + \frac{1}{b+c}$ is	equal to						
	(a) $\frac{1}{a+b+c}$	(b) $\frac{2}{a+b+c}$	(c) $\frac{3}{a+b+c}$	(d) None of these					
23.		riangle are (-2,3) and		es at the origin and					
	(a) (7, 4)	x + y = 7, then the th (b) (8, 14)		(d) None of these					
24.	Find the equations	of the lines through	the point of intersect	ion of the lines $x - y + 1 = 0$					
	and $2x - 3y + 5 = 0$	and whose distance f	rom the point (3, 2) is	$\frac{7}{5}$.					
	` '	d 4x - 3y + 1 = 0 $4x + 3y + 1 = 0$	(b) $3x + 4y + 6 = 0$ and $4x + 3y + 1 = 0$ (d) None of these						
25.		ngle formed by thes		e of 45° with line $x - y = 2$, (d) 2/9 sq unit					
26.	m will satisfy			/ + 90 = 0, then the value of					
	(a) <i>m</i> < 3	(b) m < 3							
27.		is inscribed in the parties. I left of <i>S</i> , then side lea		ring its focus at <i>S</i> . If chord					
		(b) $4a (2 - \sqrt{3})$	-						
28.	In the normal at the	e end of latusrectum	of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2}$	- - = 1 with eccentricity e,					
		end of the minor ax							
	(c) $e^2 (1 + e^2) = -1$		(d) $e^2(1+e^2)=2$						
29.	If the sum of the square then its distance from		of a point from the t	chree coordinate axes be 36,					
	(a) 6	(b) 3√2	(c) 2√3	(d) None of these					
<i>30</i> .	Three vertices of a property fourth vertex <i>D</i> .	parallelogram <i>ABCD</i> :	are A(1, 2, 3), B(-1, -2, -	- 1) and C(2, 3, 2). Find the					
	(a) (-4, -7, -6)	(b) (4, 7, 6)	(c) (4, 7, – 6)	(d) None of these					

31. If $\lim_{x \to \infty} \left[\frac{x^3 + 1}{x^2 + 1} - (ax + b) \right] = 2$, then	<i>3</i> 1.	If $\lim_{x\to\infty}$	$\int \frac{x^3+1}{x^2+1}$	- (ax + b)	= 2, then
--	-------------	------------------------	----------------------------	------------	-----------

(a)
$$a = 1$$
 and $b = 1$

(b)
$$a = 1$$
 and $b = -1$

(b)
$$a = 1$$
 and $b = -1$ (c) $a = 1$ and $b = -2$

(d)
$$\alpha = 1$$
 and $b = 2$

32.
$$\lim_{x \to \infty} \frac{x^4 \cdot \sin\left(\frac{1}{x}\right) + x^2}{1 + |x|^3}$$
 equals

$$(b) - 1$$

33.
$$\lim_{n \to \infty} \left(\frac{n^2 - n + 1}{n^2 - n - 1} \right)^{n \cdot (n - 1)}$$
 is equal to

34. If harmonic mean of first 5 observations is $\frac{5}{2}$ and harmonic mean of another 5 observations is $\frac{9}{2}$, then harmonic mean of all 10 observations is

(b)
$$\frac{45}{14}$$

(c)
$$\frac{101}{36}$$

(d) None of these

35. Let in a series of 2n observations, half of them are equal to α and remaining half are equal to $-\alpha$. Also, by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively, then the value of $a^2 + b^2$ is equal to

(d) 925

36. A die is rolled three times. The probability of getting a larger number than the previous number each time is

(a)
$$\frac{15}{216}$$

(b)
$$\frac{5}{54}$$

(c)
$$\frac{13}{216}$$

(d) $\frac{1}{10}$

37. Out of 13 applicants for a job, there are 8 men and 5 women. It is desired to select 2 persons for the job. The probability that atleast one of the selected persons will be a woman, is

(a)
$$\frac{5}{13}$$

(b)
$$\frac{10}{13}$$

(b)
$$\frac{10}{13}$$
 (c) $\frac{14}{39}$

(d) $\frac{25}{79}$

38. The probability that at least one of the events A and B occurs is $\frac{3}{5}$. If A and B occur simultaneously with probability $\frac{1}{5}$, then $P(\overline{A}) + P(\overline{B})$ is

(a)
$$\frac{2}{5}$$

(b)
$$\frac{4}{5}$$

(c)
$$\frac{6}{5}$$

(d) $\frac{7}{5}$

39. If $f(x) = \cos ax + \sin x$ is periodic, then a must be

(a) irrational

(b) rational

(c) positive real number

(d) None of these

40.	The range of the fun	ection $f(x) = \tan \sqrt{\frac{\pi^2}{9}}$	$-x^2$ is	
	(a) [0, 3]	(b) $[0, \sqrt{3}]$	(c) (-∞,∞)	(d) None of these
		Section-B	(2 Marks each)	
41.	•		. ,	ht from which it has fallen. if it is gently dropped from
	(a) 1260 m	(b) 600 m	(c) 1080 m	(d) None of these
42.	(•)		atic equation whose	roots are $\alpha = \alpha + \alpha^2 + \alpha^4$
	and $\beta = \alpha^3 + \alpha^5 + \alpha^6$, (a) $x^2 - x + 2 = 0$		(c) $x^2 - x - 2 = 0$	(d) $x^2 + x + 2 = 0$
43.	plays two games wit	th every other partic selves exceeds the n	ipant. If the number	urnament. Each participant of games played by the yed between the men and
	(a) 12	(b) 11	(c) 9	(d) 7
44.	The value of x , for w	hich the 6th term in	the expansion of $\left\{2^{lo}\right\}$	$g_2\sqrt{(9^{x-1}+7)}+rac{1}{2^{(1/5)\log_2(3^{x-1}+1)}}\bigg\}^7$ is
	84, is equal to (a) 4	(b) 3	(c) 2	(d) 5
45.	elevation of the cent	tre of the balloon be		n observer. If the angle of centre of the balloon is (d) $r \sin \alpha \csc \left(\frac{\beta}{2}\right)$
46.	and $x + 2y = 0$, respe	ctively. If the coordir		of a \triangle ABC are $x - y + 5 = 0$ (1,-2), then equation of BC is (d) $14x + 23y - 40 = 0$
47.	The equations of tra x + 2y - 3 = 0, $2x - yof the hyperbola is$			la are respectively $\sqrt{2}$ and $2/\sqrt{3}$. The equation
	(a) $\frac{2}{5}(x+2y-3)^2-\frac{3}{5}$ ($2x-y+4)^2=1$	(b) $\frac{2}{5}(2x-y+4)^2-\frac{3}{5}$	$(x+2y-3)^2=1$
	(c) $2(2x - y + 4)^2 - 3(x + 4$		(d) $2(2x - y + 4)^2 - (x + 4)^2$	
48.	If $\lim_{x \to 1} \frac{x^2 - ax + b}{x - 1} = 5$,	then $a + b$ is equal to	0	
	(a) -4	(b) 1	(c) -7	(d) 5

- **49.** If mean and standard deviation of 5 observations x_1, x_2, x_3, x_4, x_5 are 10 and 3, respectively, then the variance of 6 observations x_1, x_2,x_5 and 50 is equal to (a) 507.5 (b) 586.5 (c) 582.5 (d) 509.5
- **50.** Number 1, 2, 3, ..., 100 are written down on each of the cards *A*, *B* and *C*. One number is selected at random from each of the cards. The probability that the numbers so selected can be the measures (in cm) of three sides of right-angled triangles no two of which are similar, is
 - (a) $\frac{4}{100^3}$
- (b) $\frac{3}{50^3}$
- (c) $\frac{36}{100^3}$
- (d) None of these

OMR SHEET

								•											
1		b	С	d	2	a		С	d	3	a	b		d	4		b	С	d
5	a		С	d	6		b	С	d	7	a	b		d	8	a	b	С	
9	a		С	d	10	a	b		d	11	a	b		d	12	a	b		d
13	a		С	\bigcirc d	14	a		С	\bigcirc d	15	a	b		\bigcirc	16		b	С	\bigcirc d
17		b	С	\bigcirc	18	a		С	\bigcirc d	19	a	b		\bigcirc	20	a	b		\bigcirc d
21		b	C	\bigcirc	22	a	b		\bigcirc d	23	a	b	C		24		b	C	\bigcirc d
25	a		С	\bigcirc	26	a		С	\bigcirc	27	a		C	\bigcirc	28	a		С	\bigcirc d
29	a		C	\bigcirc	30	a		C	\bigcirc d	31	a	b		\bigcirc	32	a	b	C	
33	a		C	\bigcirc	34	a		C	\bigcirc d	35		b	C	\bigcirc d	36	a		C	\bigcirc d
37	a	b	С		38	a	b		\bigcirc d	39	a		С	\bigcirc	40	a		С	\bigcirc d
41	a	b		\bigcirc	42	a	b	(c)		43		b	c	\bigcirc	44	a	b		\bigcirc
45		b	C	d	46	a	b	C		47	a		C	d	48	a	b		d
49		b	С	d	50	a	b	С											

Answers with Hints

1. It is given that n(A) = m and n(B) = n

$$2^m = 2^n + 112$$

[: number of subsets of set A and B are 2^m and 2^n , respectively]

...(i)

$$\Rightarrow \qquad \qquad 2^m - 2^n = 2^4 (7)$$

$$\Rightarrow$$
 $2^{n}(2^{m-n}-1)=2^{4}(2^{3}-1)$

On comparing n = 4 and m - n = 3

$$\therefore$$
 $m = 7$

So, $m \cdot n = 28$

2.
$$n(A) = 40\%$$
 of $10000 = 4000$, $n(B) = 2000$,

$$n(C) = 1000, n(A \cap B) = 500,$$

$$n(B \cap C) = 300, n(C \cap A) = 400,$$

$$n(A \cap B \cap C) = 200$$

$$\therefore \quad n(A \cap \overline{B} \cap \overline{C}) = n\{A \cap (B \cup C)'\} = n(A) - n\{A \cap (B \cup C)\}$$

$$= n(A) - n(A \cap B) - n(A \cap C) + n(A \cap B \cap C)$$

$$=4000-500-400+200=3300$$

3.
$$U = \{x : x^5 - 6x^4 + 11x^3 - 6x^2 = 0\} = \{0, 1, 2, 3\}$$

$$A = \{x: x^2 - 5x + 6 = 0\} = \{2,3\}$$

and
$$B = \{x : x^2 - 3x + 2 = 0\} = \{2,1\}$$

$$\therefore (A \cap B)' = U - (A \cap B)$$

$$= \{0, 1, 2, 3\} - \{2\} = \{0, 1, 3\}$$

4. Given,
$$\frac{3-|x|}{4-|x|} \ge 0 \Rightarrow 3-|x| \le 0$$
 and $4-|x| < 0$

or
$$3 - |x| \ge 0$$
 and $4 - |x| > 0$

$$\Rightarrow$$
 | $x \ge 3$ and | $x \ge 4$ or | $x \le 3$ and | $x \le 4$

$$\Rightarrow$$
 $|x| > 4 \text{ or } |x| \le 3$

$$\Rightarrow$$
 $(-\infty, -4) \cup [-3, 3] \cup (4, \infty)$

5.
$$x^{12} - x^9 + x^4 - x + 1 > 0$$
, three cases arise

Case I When
$$x \le 0$$
, $x^{12} > 0$, $-x^9 > 0$, $x^4 > 0$, $-x > 0$

$$\Rightarrow$$
 $x^{12} - x^9 + x^4 - x + 1 > 0, \forall x \le 0$

Case II When $0 < x \le 1$,

$$x^9 < x^4, x < 1 \Rightarrow -x^9 + x^4 > 0$$
 and $1 - x > 0$

$$\therefore$$
 $x^{12} - x^9 + x^4 - x + 1 > 0, \forall 0 < x \le 1$...(ii)

Case III When $x > 1, x^{12} > x^9, x^4 > x$

$$\Rightarrow$$
 $x^{12} - x^9 + x^4 - x + 1 > 0, \forall x > 1$...(iii)

From Eqs. (i), (ii) and (iii), the above equation holds for $x \in R$.

6. Given,
$$\log_{10}(x^3 + y^3) - \log_{10}(x^2 + y^2 - xy) \le 2$$

$$\Rightarrow \log_{10} \frac{(x^3 + y^3)}{x^2 + y^2 - xy} \le 2$$

$$\Rightarrow \log_{10}(x+y) \le 2 \Rightarrow x+y \le 100$$

Using AM ≥ GM,

$$\frac{x+y}{2} \ge \sqrt{xy} \Rightarrow \sqrt{xy} \le \frac{x+y}{2} \le \frac{100}{2}$$

$$\therefore xy \le 2500$$

7. Given,
$$3600 = \frac{40}{2} [2a + (40 - 1) d]$$

$$\Rightarrow$$
 3600 = 20 (2 a + 39 d)

$$\Rightarrow 180 = 2a + 39d \qquad \dots (i)$$

After 30 instalments one-third of the debt is unpaid.

Hence, $\frac{3600}{3}$ = 1200 is unpaid and 2400 is paid.

Now,
$$2400 = \frac{30}{2} \{2\alpha + (30 - 1) \alpha\}$$

∴
$$160 = 2a + 29d$$
 ...(ii)

On solving Eqs. (i) and (ii), we get

$$a = 51, d = 2$$

Now, the value of 8th instalment

$$= a + (8 - 1) d$$

= 51 + 7 · 2 = ₹ 65

8. Let
$$S = 1 + 2 + 3 + ... + 100$$

$$=\frac{100}{2}(1+100)=50(101)=5050$$

Let
$$S_1 = 3 + 6 + 9 + 12 + ... + 99$$

= $3(1 + 2 + 3 + 4 + ... + 33)$
= $3 \cdot \frac{33}{2}(1 + 33) = 99 \times 17 = 1683$

Let
$$S_2 = 5 + 10 + 15 + ... + 100$$

= $5(1 + 2 + 3 + ... + 20)$
= $5 \cdot \frac{20}{2}(1 + 20) = 50 \times 21 = 1050$

Let
$$S_3 = 15 + 30 + 45 + ... + 90$$

= $15(1 + 2 + 3 + ... + 6)$
= $15 \cdot \frac{6}{2}(1 + 6) = 45 \times 7 = 315$

$$\therefore$$
 Required sum = $S - S_1 - S_2 + S_3$
= $5050 - 1683 - 1050 + 315 = 2632$

9. Given, $\alpha = 1$ and $4T_2 + 5T_3$ is minimum.

Let r be the common ratio of the GP, then

$$\therefore \qquad 4T_2 + 5T_3 = 4 (ar) + 5 (ar^2)$$

$$\Rightarrow \qquad 4r + 5r^2 = f(r)$$
[say] ...(i)

$$\Rightarrow \qquad \qquad r(4+5r)=f(r)$$

$$f(r) = 0$$

$$r(4+5r)=0$$

$$\Rightarrow$$
 $r = 0, -4/5$

We know that, if a > 0, quadratic expression

$$ax^2 + bx + c$$
 has least value at $x = -\frac{b}{2a}$.

From the graph it is clear that, minima occurs of point $\left(\frac{-2}{5}, \frac{-4}{5}\right)$.

$$\therefore \qquad r = \frac{-2}{5}$$

10.
$$x^2 + 1 = 0$$

$$\Rightarrow x = \pm i$$

$$x^2 + 1$$
 is root of

$$P(x) = 5x^4 + 4x^3 + 3x^2 + Mx + N$$

Hence, x = i and -i are roots of P(x).

$$\Rightarrow$$
 $P(i) = 0 \text{ and } P(-i) = 0$

$$\Rightarrow$$
 5(i)⁴ + 4i³ + 3i² + Mi + N = 0

and
$$5(-i)^4 + 4(-i)^3 + 3(i)^2 + M(-i) + N = 0$$

$$\Rightarrow \qquad \qquad 5 - 4i - 3 + Mi + N = 0$$

and
$$5 + 4i - 3 - Mi + N = 0$$

$$\Rightarrow (2+N)+i(M-4)=0$$

and
$$(2 + N) + i(4 - M) = 0$$

On comparing real and imaginary parts to zero, we get

$$N = -2, M = 4$$

and
$$N = -2, M = 4$$

Hence, M and N are unique.

and
$$M - N = 4 - (-2) = 6$$

11. Let
$$z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$$

and $z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$
Since, $|z_2| = |z_1|$
 \therefore $r_2 = r_1$
Also, $\arg(z_1) + \arg(z_2) = \pi$
 \therefore $\arg(z_2) = \pi - \arg(z_1)$
 \Rightarrow $\arg(z_2) = \pi - \theta_1$
 \therefore $z_2 = r_1 \{\cos(\pi - \theta_1) + i \sin(\pi - \theta_1)\}$
 $= r_1(-\cos \theta_1 + i \sin \theta_1)$
 $= -r_1(\cos \theta_1 - i \sin \theta_1) = -\overline{z}_1$
 \Rightarrow $z_1 = -\overline{z}_2$
12. $4 + 5\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} - 3\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$
 \Rightarrow $4 + 5(\omega)^{334} - 3(-\omega^2)^{365}$
 \Rightarrow $4 + 5\omega + 3\omega$
 \Rightarrow $\frac{1}{2}\{8 - 5 + 5i\sqrt{3} - 3 + 3i\sqrt{3}\}$
 \Rightarrow $\frac{1}{2}\{8i\sqrt{3}\} = 4\sqrt{3}i$

- **13.** In out of 10 persons, P_1 is always consider and P_4 and P_5 is not consider.
 - i.e. We have to select, 4 persons out of 7 person and after that they arrange it.

∴ Required number of ways =
$${}^{7}C_{4} \times 5!$$

= $\frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times 120$
= $35 \times 120 = 4200$

- **14.** Total number of ways = ${}^{10}C_1 + {}^{10}C_2 + {}^{10}C_3 + {}^{10}C_4 + {}^{10}C_5 + {}^{10}C_6 + \dots + {}^{10}C_{10}$ = $2^{10} - 1$ [: ${}^nC_0 + {}^nC_1 + {}^nC_2 + {}^nC_n \dots = 2^n$]
- 15. Total number of ways = (Attempt 3 from group I and 4 from group II)

=600 + 180 = 780

16. Given,
$$A = \{x : x^2 - 5x + 6 = 0\}$$

= $\{x : (x - 2)(x - 3) = 0\} = \{2, 3\}$
and $B = \{2, 4\}$ and $C = \{4, 5\}$

Now,
$$B \cap C = \{2, 4\} \cap \{4, 5\} = \{4\}$$

$$A \times (B \cap C) = \{2,3\} \times \{4\} = \{(2,4), (3,4)\}$$

17. The general term of $(1+x)^{2n}$ is $T_{r+1} = {}^{2n}C_r x^r$

$$T_2 = {}^{2n}C_1X^2, T_3 = {}^{2n}C_2X^3, T_4 = {}^{2n}C_3X^4$$

Since, coefficients are in AP

⇒
$${}^{2n}C_1, {}^{2n}C_2, {}^{2n}C_3 \text{ are in AP}$$

⇒ $2 \times {}^{2n}C_2 = {}^{2n}C_1 + {}^{2n}C_3$

⇒ $2 = \frac{{}^{2n}C_1}{{}^{2n}C_2} + \frac{{}^{2n}C_3}{{}^{2n}C_2}$

⇒ $2 = \frac{2}{(2n-2+1)} + \frac{2n-3+1}{3}$

$$\Rightarrow \qquad 2 = \frac{2}{2n-1} + \frac{2n-2}{3}$$

$$\Rightarrow \qquad 2n^2 - 9n + 7 = 0$$

$$\therefore \qquad 2n^2 - 9n = -7$$

18.
$$(19)^{2005} + (11)^{2005} - (9)^{2005}$$

$$= (10 + 9)^{2005} + (10 + 1)^{2005} - (9)^{2005}$$

$$= \{9^{2005} + {}^{2005}C_{1} (9)^{2004} \times 10 + ...\} + ({}^{2005}C_{0} + {}^{2005}C_{1} 10 + ...) - (9)^{2005}$$

$$= ({}^{2005}C_{1} 9^{2004} \times 10 + \text{multiple of 10}) + (1 + \text{multiple of 10})$$

∴ Unit digit = 1

19. Given,
$$\left(x^2 + \frac{1}{x^2} + 2\right)^n \Rightarrow \left\{\left(x + \frac{1}{x}\right)^2\right\}^n \Rightarrow \left(x + \frac{1}{x}\right)^{2n}$$

Here, 2n is even.

Therefore, total terms (2n + 1) is odd.

Thus, only one middle term exist.

and $\left(\frac{2n}{2}+1\right)$ i.e. (n+1)th term will be middle term.

20. We have,
$$\cos A = m \cos B$$

$$\Rightarrow \frac{\cos A}{\cos B} = \frac{m}{1}$$

$$\Rightarrow \frac{\cos A + \cos B}{\cos A - \cos B} = \frac{m+1}{m-1}$$

$$2\cos \frac{A+B}{\cos A}\cos \frac{B-A}{\cos B}$$

$$\Rightarrow \frac{2\cos\frac{A+B}{2}\cos\frac{B-A}{2}}{2\sin\frac{A+B}{2}\sin\frac{B-A}{2}} = \frac{m+1}{m-1}$$

$$\Rightarrow \qquad \cot \frac{A+B}{2} = \left(\frac{m+1}{m-1}\right) \tan \frac{B-A}{2}$$

But
$$\cot \frac{A+B}{2} = \lambda \tan \frac{B-A}{2}$$

$$\lambda = \frac{m+1}{m-1}$$

21.
$$x + 2\tan x = \frac{\pi}{2}$$

$$\Rightarrow 2\tan x = \frac{\pi}{2} - x$$

$$\Rightarrow \tan x = -\frac{1}{2}x + \frac{\pi}{4}$$

Number of solutions of the given equation is '3'.

22. We have,
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$\Rightarrow \qquad \cos 60^{\circ} = \frac{a^2 + b^2 - c^2}{2ab}$$

$$\Rightarrow \qquad \qquad a^2 + b^2 - c^2 = ab$$

$$\Rightarrow b^2 + bc + a^2 + ac = ab + ac + bc + c^2$$

$$\Rightarrow$$
 $b(b+c)+a(a+c)=(a+c)(b+c)$

On dividing by (a + c)(b + c) and add 2 on both sides, we get

$$1 + \frac{b}{a+c} + 1 + \frac{a}{b+c} = 3$$

$$\Rightarrow \frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$$

23. Let O(0, 0) be the orthocentre, A(h, k) be the third vertex and B(-2,3) and C(5, -1) the other two vertices. Then, the slope of the line through A and O is $\frac{k}{h}$, while the line through B and C has the slope $\frac{(-1-3)}{(5+2)} = -\frac{4}{7}$. By the poperty of the orthocentre, these two lines must be perpendicular, so we have

$$\left(\frac{k}{h}\right)\left(-\frac{4}{7}\right) = -1$$

$$\Rightarrow \qquad \frac{k}{h} = \frac{7}{4} \qquad ...(i)$$
Also,
$$\frac{5-2+h}{3} + \frac{-1+3+k}{3} = 7$$

$$\Rightarrow \qquad h+k=16 \qquad ...(ii)$$

which is not satisfied by the points given in the options (a), (b) or (c).

24. Equation of a line passing through the point of intersection of lines is

$$x - y + 1 + \lambda(2x - 3y + 5) = 0$$

$$\Rightarrow x(1 + 2\lambda) + y(-1 - 3\lambda) + 1 + 5\lambda = 0 \qquad ...(i)$$
Its distance from point (3, 2) = $\frac{7}{5}$

$$\Rightarrow \frac{\mid 3(1+2\lambda)+2(-1-3\lambda)+1+5\lambda\mid}{\sqrt{(1+2\lambda)^2+(-1-3\lambda)^2}} = \frac{7}{5} \Rightarrow \frac{\mid 2+5\lambda\mid}{\sqrt{13\lambda^2+10\lambda+2}} = \frac{7}{5}$$

On squaring, we get

 \Rightarrow

$$25(4 + 25\lambda^{2} + 20\lambda) = 49(13\lambda^{2} + 10\lambda + 2)$$
$$6\lambda^{2} - 5\lambda - 1 = 0 \Rightarrow \lambda = 1, -\frac{1}{6}$$

On putting $\lambda = 1, -\frac{1}{6}$ in Eq. (i) respectively, we get

$$3x - 4y + 6 = 0$$
 and $4x - 3y + 1 = 0$

25. The equation of lines are

$$y - y_1 = \frac{m_1 \pm m_2}{1 \mp m_1 m_2} (x - x_1)$$

Since,
$$m_1 = 1$$
, $m_2 = 1$

$$y - 4 = \frac{1 \pm 1}{1 \mp 1} (x - 3)$$

$$\Rightarrow$$
 $y = 4$ or $x = 3$

Hence, the lines which make the triangle are x - y = 2, x = 3 and y = 4.

The intersection points of these lines are (6, 4), (3, 1) and (3, 4).

∴ Area of triangle =
$$\frac{1}{2} |6(1-4) + 3(4-4) + 3(4-1)|$$

= $\frac{1}{2} |6(-3) + 3(0) + 3(3)|$
= $\frac{1}{2} |-18 + 0 + 9| = \frac{9}{2}$ sq units

26. The intersection of line and circle is

$$x^2 + m^2x^2 - 20mx + 90 = 0$$

$$\Rightarrow$$
 $x^2 (1+m^2) - 20 mx + 90 = 0$

Now,
$$D < 0$$

$$\Rightarrow$$
 400 $m^2 - 4 \times 90 (1 + m^2) < 0$

$$\Rightarrow$$
 40 m^2 < 360

27. Let $A = (at_1^2, 2at_1), B = (at_2^2, 2at_2)$

We have,
$$m_{AS} = \tan\left(\frac{5\pi}{6}\right) \Rightarrow \frac{2at_1}{at_1^2 - a} = -\frac{1}{\sqrt{3}}$$

$$\Rightarrow$$
 $t_1^2 + 2\sqrt{3}t_1 - 1 = 0 \Rightarrow t_1 = -\sqrt{3} \pm 2$

Clearly, $t_1 = -\sqrt{3} - 2$ is rejected.

Thus,
$$t_1 = (2 - \sqrt{3})$$

Hence,
$$AB = 4at_1 = 4a(2 - \sqrt{3})$$

28. Normal at $\left(ae, \frac{b^2}{a}\right)$ of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

$$\frac{x - ae}{\frac{ae}{a^2}} = \frac{y - \frac{b^2}{a}}{\left(\frac{b^2}{a}/b^2\right)}$$

Since, it passes through (0, -b), then

$$\frac{0-ae}{\frac{ae}{a^2}} = \frac{-b - \frac{b^2}{a}}{\frac{1}{a}}$$

$$\Rightarrow \qquad -a^2 = -a\left(b + \frac{b^2}{a}\right)$$

$$\Rightarrow$$
 $a^2 = ab + b^2$

$$\Rightarrow \qquad \qquad a^2 = ab + a^2 - a^2e^2$$

$$\Rightarrow$$
 $b = ae^2$

$$\Rightarrow$$
 $b^2 = a^2 e^4$

$$\Rightarrow \qquad \qquad \alpha^2(1-e^2) = \alpha^2e^4$$

$$\Rightarrow \qquad 1 - e^2 = e^4$$

$$\Rightarrow \qquad \qquad e^2(e^2 + 1) = 1$$

[since, the line does not intersect the circle]

[:: $b^2 = a^2 - a^2e^2$]

29. Let P(x, y, z) be any point in the plane.

According to the given condition,

(distance from P to X-axis) 2 + (distance from P to Y-axis) 2

+ (distance from P to Z-axis)² = 36

$$\Rightarrow (\sqrt{y^2 + z^2})^2 + (\sqrt{x^2 + z^2})^2 + (\sqrt{x^2 + y^2})^2 = 36$$

$$\Rightarrow (y^2 + z^2) + (x^2 + z^2) + (x^2 + y^2) = 36$$

$$\Rightarrow 2(x^2 + y^2 + z^2) = 36$$

$$\Rightarrow x^2 + y^2 + z^2 = 18 \qquad ...(i)$$

 \therefore The distance from origin to the point (x, y, z) is

$$= \sqrt{x^2 + y^2 + z^2} = \sqrt{18}$$
 [:: from Eq. (i)]
= $3\sqrt{2}$

30. Let the fourth vertex be (x, y, z).

We know that, diagonals of a parallelogram are bisecting to each other.

i.e. mid-point of a diagonals are coinciding.

∴ Mid-point of diagonal AC = Mid-point of diagonal BD

Hence, required point is (4, 7, 6).

31. Given that,

$$\lim_{x \to \infty} \left[\frac{x^3 + 1}{x^2 + 1} - (ax + b) \right] = 2$$

$$\Rightarrow \lim_{x \to \infty} \left[\frac{x^3 (1 - a) - bx^2 - ax + (1 - b)}{x^2 + 1} \right] = 2$$

$$\Rightarrow \lim_{x \to \infty} \left[\frac{x(1 - a) - b - \frac{a}{x} + \frac{(1 - b)}{x^2}}{1 + \frac{1}{x^2}} \right] = 2$$

This limit will exist, if

$$1-\alpha=0$$
 and $b=-2$ \Rightarrow $\alpha=1$ and $b=-2$

32.
$$\lim_{x \to \infty} \frac{x^{4} \cdot \sin\left(\frac{1}{x}\right) + x^{2}}{1 + |x|^{3}} = \lim_{x \to \infty} \left[\frac{x \sin\left(\frac{1}{x}\right) + \frac{1}{x}}{\frac{1}{x^{3}} + \frac{|x|^{3}}{x^{3}}} \right]$$
$$= \lim_{x \to \infty} \frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}} + \lim_{x \to \infty} \frac{1}{x}$$
$$= \frac{\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{|x|^{3}}{x^{3}}}{\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{|x|^{3}}{x^{3}}}$$

[dividing numerator and denominator by x^3]

33.
$$\lim_{n \to \infty} \left(\frac{n^2 - n + 1}{n^2 - n - 1} \right)^{n(n-1)}$$

$$= \lim_{n \to \infty} \left(\frac{n(n-1) + 1}{n(n-1) - 1} \right)^{n(n-1)}$$

$$= \lim_{n \to \infty} \frac{\left[n(n-1) \right]^{n(n-1)} \left[1 + \frac{1}{n(n-1)} \right]^{n(n-1)}}{\left[n(n-1) \right]^{n(n-1)} \left[1 - \frac{1}{n(n-1)} \right]^{n(n-1)}}$$

$$= \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n(n-1)} \right)^{n(n-1)}}{\left(1 - \frac{1}{n(n-1)} \right)^{n(n-1)}} = \frac{e}{e^{-1}} = e^2$$

 $=\frac{1-0}{0+1}=1$

$$\left[\because \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \mathbf{e}\right]$$

- **34.** Let H_1 and n_1 are the harmonic mean and number of observations of first group and H_2 and n_2 are the harmonic mean and number of observations of another group.
 - \therefore By using combined harmonic mean formula, we get

Combined harmonic mean =
$$\frac{n_1 + n_2}{\frac{n_1}{H_1} + \frac{n_2}{H_2}} = \frac{\frac{5+5}{5}}{\frac{5}{2} + \frac{5}{9}} = \frac{\frac{10}{28}}{\frac{28}{9}} = \frac{\frac{90}{28}}{\frac{28}{14}} = \frac{45}{14}$$

35. Let observations are denoted by x_i for

and
$$\overline{X} = \frac{\sum x_i}{2n} = \frac{(\alpha + \alpha + \dots + \alpha) - (\alpha + \alpha + \dots + \alpha)}{2n} = 0$$

$$\sigma_x^2 = \frac{\sum x_i^2}{2n} - (\overline{x})^2$$

$$= \frac{\alpha^2 + \alpha^2 + \dots + \alpha^2}{2n} - 0$$

$$= \alpha^2$$

$$\sigma_x = \alpha$$

Now, adding a constant b, then

$$\overline{y} = \overline{x} + b = 5$$

$$b = 5$$

and $\sigma_y = \sigma_x$ (No change in SD)

$$\Rightarrow$$
 $a = 20$

$$\Rightarrow \qquad \alpha^2 + b^2 = (20)^2 + 5^2 = 425$$

36. The total number of ways = $6^3 = 216$

If the second number is i (i > 1), then the total number of favourable ways

$$= \sum_{i=1}^{5} (i-1) (6-i) = 20$$

$$\therefore$$
 Required probability = $\frac{20}{216} = \frac{5}{54}$

37. 13 applicants = 8 men + 5 women

2 persons are selected i.e. (1 men + 1 women) or 2 women

:. Required probability =
$$\frac{{}^{8}C_{1} \times {}^{5}C_{1}}{{}^{13}C_{2}} + \frac{{}^{5}C_{2}}{{}^{13}C_{2}} = \frac{50}{{}^{13}C_{2}} = \frac{25}{39}$$

38. Here, $P(A \cup B) = \frac{3}{5}$ and $P(A \cap B) = \frac{1}{5}$.

So, from the addition theorem,

$$\frac{3}{5} = P(A) + P(B) - \frac{1}{5}$$

$$\frac{4}{5} = 1 - P(\overline{A}) + 1 - P(\overline{B})$$

$$\therefore P(\overline{A}) + P(\overline{B}) = 2 - \frac{4}{5} = \frac{6}{5}$$

39. Let λ be the period of $\sin x + \cos \alpha x$.

Then, $\sin(\lambda + x) + \cos\alpha(\lambda + x) = \sin x + \cos\alpha x \ \forall \ x$ in this identity, putting x = 0 and $x = -\lambda$, we get $\sin\lambda + \cos\alpha\lambda = 1$ and $1 = -\sin\lambda + \cos\alpha\lambda$

On solving above equations, we get

$$\sin \lambda = 0$$
 and $\cos \alpha \lambda = 1$

Hence, $\lambda = n\pi$ and $a\lambda = 2m\pi$, where m, n are non-zero integers.

Here,
$$\frac{a\lambda}{\lambda} = \frac{2m\pi}{p_{\pi}} \implies a = \frac{2m}{p_{\pi}}$$
 [:: $\lambda \neq 0$]

40. Given, $f(x) = \tan \sqrt{\frac{\pi^2}{9} - x^2}$

For f(x) to be defined,

$$\frac{\pi^2}{9} - x^2 \ge 0$$

$$\Rightarrow x^2 \le \frac{\pi^2}{9} \Rightarrow -\frac{\pi}{3} \le x \le \frac{\pi}{3}$$

 \therefore Domain of $f = \left[-\frac{\pi}{3}, \frac{\pi}{3} \right]$

Since, the greatest value of f(x) is $\tan \sqrt{\frac{\pi^2}{9}} - 0$, when x = 0 and the least value of f(x) is $\tan \sqrt{\frac{\pi^2}{9} - \frac{\pi^2}{9}}$, when $x = \frac{\pi}{3}$.

So, the greatest value of f(x) is $\sqrt{3}$ and the least value of f(x) is 0.

- \therefore Range of $f = [0, \sqrt{3}]$
- **41.** Initially the ball falls from a height of 120 m. After striking the floor, it rebounds and goes to a height of $\frac{4}{5} \times$ (120) m. Now, it falls from a height of $\frac{4}{5} \times$ (120) m and after rebounding goes to a height of $\frac{4}{5} \left[\frac{4}{5} (120) \right]$ m. This process is continued till the ball comes to rest.

Hence, the total distance travelled is

$$120 + 2\left[\frac{4}{5}(120) + \left(\frac{4}{5}\right)^{2}(120 + \dots \infty)\right]$$
$$= 120 + 2\left[\frac{\frac{4}{5}(120)}{1 - \frac{4}{5}}\right] = 1080 \text{ m}$$

42. We have, $a = \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right)$

$$\Rightarrow \qquad a^7 = \left[\cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right)\right]^7$$

$$= \cos 2\pi + i\sin 2\pi = 1 \qquad ...(i)$$

Let
$$S = \alpha + \beta = (\alpha + \alpha^2 + \alpha^4) + (\alpha^3 + \alpha^5 + \alpha^6)$$
 $[:: \alpha = \alpha + \alpha^2 + \alpha^4, \beta = \alpha^3 + \alpha^5 + \alpha^6]$

$$\Rightarrow S = a + a^{2} + a^{3} + a^{4} + a^{5} + a^{6} = \frac{a(1 - a^{6})}{1 - a}$$

$$\Rightarrow S = \frac{a - a^7}{1 - a} = \frac{a - 1}{1 - a} = -1$$
 ...(ii)

Let
$$P = \alpha\beta = (\alpha + \alpha^2 + \alpha^4) (\alpha^3 + \alpha^5 + \alpha^6)$$

$$= \alpha^4 + \alpha^6 + \alpha^7 + \alpha^5 + \alpha^7 + \alpha^8 + \alpha^7 + \alpha^9 + \alpha^{10}$$

$$= \alpha^4 + \alpha^6 + 1 + \alpha^5 + 1 + \alpha + 1 + \alpha^2 + \alpha^3$$

$$= 3 + (\alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6) = 3 + S$$

$$= 3 - 1 = 2$$
[from Eq. (ii)]

Required equation is,

 \Rightarrow

$$x^2 - Sx + P = 0$$
$$x^2 + x + 2 = 0$$

43. Since, there are *m*-men and 2-women and each participant plays two games with every other participant.

:.Number of games played by the men between themselves = $2 \times {}^mC_2$ and the number of games played between the men and the women = $2 \times {}^mC_1 \times {}^2C_1$ Now, according to the question,

$$2^{m}C_{2} = 2^{m}C_{1}^{2}C_{1} + 84$$
⇒
$$\frac{m!}{2!(m-2)!} = m \times 2 + 42$$
⇒
$$m(m-1) = 4m + 84$$
⇒
$$m^{2} - m = 4m + 84$$
⇒
$$m^{2} - 5m - 84 = 0$$
⇒
$$m^{2} - 12m + 7m - 84 = 0$$
⇒
$$m(m-12) + 7(m-12) = 0$$
⇒
$$m = 12$$
 [: $m > 0$]

44. We have,

$$\left[2^{\log_2\sqrt{9^{x-1}+7}} + \frac{1}{2^{(1/5)\log_2(3^{x-1}+1)}}\right]'$$

$$= \left[\sqrt{9^{x-1}+7} + \frac{1}{(3^{x-1}+1)^{1/5}}\right]^7$$

$$\therefore \qquad T_6 = {}^7C_5 \left(\sqrt{9^{x-1}+7}\right)^{7-5} \left[\frac{1}{(3^{x-1}+1)^{1/5}}\right]^5$$

$$= {}^7C_5 \left(9^{x-1}+7\right) \frac{1}{(3^{x-1}+1)}$$

$$\Rightarrow \qquad 84 = {}^7C_5 \frac{(9^{x-1}+7)}{(3^{x-1}+1)}$$

$$\Rightarrow \qquad 9^{x-1}+7=4(3^{x-1}+1)$$

$$\Rightarrow \qquad 3^{2x}+7=4(3^{x-1}+1)$$

$$\Rightarrow \qquad 3^{2x}+7=4(3^{x-1}+1)$$

$$\Rightarrow \qquad 3^{2x}-12(3^x)+27=0$$

$$\Rightarrow \qquad y^2-12y+27=0$$

$$\Rightarrow \qquad (y-3)(y-9)=0$$

$$\Rightarrow \qquad y=3,9$$

$$\Rightarrow \qquad x=3,9$$

$$\Rightarrow \qquad x=1,2$$

45. Since,
$$\angle QPC = \alpha$$

$$\therefore \angle QPB = \angle BPC = \frac{\alpha}{2}$$

$$\sin \frac{\alpha}{2} = \frac{r}{l}$$

$$I = r \operatorname{cosec} \frac{\alpha}{2}$$
 ...(i)

and in $\triangle POB$,

$$\sin \beta = \frac{h}{I}$$

$$\Rightarrow$$

$$h = I \sin \beta$$

$$\Rightarrow$$

$$h = r \csc \frac{\alpha}{2} \sin \beta$$

[from Eq. (i)]

46. Let $B(x_1, y_1)$ and $C(x_2, y_2)$ are the vertices of a triangle.

$$P\left(\frac{x_1+1}{2}, \frac{y_1-2}{2}\right)$$
 lies on the line $x-y+5=0$.

$$\frac{x_1+1}{2}-\frac{y_1-2}{2}=-5$$

$$\Rightarrow$$

$$x_1 - y_1 = -13$$

...(i)

Also, $PN \perp AB$

$$\frac{y_1 + 2}{x_1 - 1} = -1$$

$$\Rightarrow$$

$$y_1 + 2 = -x_1 + 1$$

 $x_1 + y_1 = -1$

$$\Rightarrow$$

$$x_1 + y_1 = -1$$

...(ii)

On solving Eqs. (i) and (ii), we get

$$x_1 = -7 \text{ and } y_1 = 6$$

 \therefore Coordinates of *B* are (-7, 6).

Similarly, the coordinates of C are $\left(\frac{11}{5}, \frac{2}{5}\right)$.

∴ Equation of *BC* is
$$(y - 6) = \frac{\frac{2}{5} - 6}{\frac{11}{5} + 7} (x + 7)$$

$$\Rightarrow 14x + 23y - 40 = 0$$

47. We have, transverse axis = x + 2y - 3 = 0 and conjugate axis = 2x - y + 4 = 0 both are perpendicular,

and

$$2a = \sqrt{2}$$
 and $2b = \frac{2}{\sqrt{3}}$

 \Rightarrow

$$\alpha = \frac{1}{\sqrt{2}}$$
 and $b = \frac{1}{\sqrt{3}}$

We know that,

Equation of the hyperbola referred to two perpendicular lines,

$$\frac{PN^2}{a^2} - \frac{PM^2}{b^2} = 1$$

$$\Rightarrow \frac{\left(\frac{2x-y+4}{\sqrt{5}}\right)^2}{\frac{1}{2}} - \frac{\left(\frac{x+2y-3}{\sqrt{5}}\right)^2}{\frac{1}{3}} = 1$$

$$\therefore \frac{2}{5}(2x-y+4)^2-\frac{3}{5}(x+2y-3)^2=1$$

48. It is given that,

$$\lim_{x \to 1} \frac{x^2 - ax + b}{x - 1} = 5$$
 ...(i)

Since, limit exist and equal to 5 and denominator is zero at x = 1, so numerator $x^2 - ax + b$ should be zero at x = 1,

So,
$$1 - a + b = 0 \Rightarrow a = 1 + b$$
 ...(ii)

On putting the value of 'a' from Eq. (ii) in Eq. (i), we get

$$\lim_{x \to 1} \frac{x^2 - (1+b)x + b}{x - 1} = 5$$

$$\Rightarrow \lim_{x \to 1} \frac{(x^2 - x) - b(x - 1)}{x - 1} = 5$$

$$\Rightarrow \lim_{x \to 1} \frac{(x-1)(x-b)}{x-1} = 5$$

$$\Rightarrow \lim_{x \to 1} (x - b) = 5$$

$$\Rightarrow 1 - b = 5$$

$$\Rightarrow$$
 1-b=

$$\Rightarrow \qquad b = -4 \qquad \qquad \dots(iii)$$

On putting value of 'b' from Eq. (iii) to Eq. (ii), we get

$$a = -3$$

So,
$$a+b=-7$$

49. The mean of five observation,

$$\overline{x} = 10$$
(given)
$$\Rightarrow \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5} = 10$$

$$\Rightarrow x_1 + x_2 + x_3 + x_4 + x_5 = 50$$
...(i)
and standard deviation SD = $\sqrt{\frac{\sum_{i=1}^{5} x_i^2}{5} - (\overline{x})^2} = 3$ (given)

$$\Rightarrow \frac{\sum_{i=1}^{5} x_{i}^{2}}{5} - 100 = 9 \Rightarrow \sum_{i=1}^{5} x_{i}^{2} = 5 \times 109$$

$$\Rightarrow \sum_{i=1}^{5} x_{i}^{2} = 545 \qquad \dots \text{(ii)}$$

Now, variance of 6 observations x_1 , x_2 , x_3 , x_4 , x_5 and – 50, is equal to

$$\sigma^{2} = \frac{\sum_{i=1}^{5} x_{i}^{2} + (-50)^{2}}{6} - \left(\frac{\sum_{i=1}^{5} x_{i} - 50}{6}\right)^{2}$$

$$= \frac{545 + 2500}{6} - \left(\frac{50 - 50}{6}\right)^{2}$$
 [from Eqs. (i) and (ii)]
$$= \frac{3045}{6} = 507.5$$

50. $n(S) = 100 \times 100 \times 100$

We know that,

$$(2n+1)^2 + (2n^2 + 2n)^2 = (2n^2 + 2n + 1)^2 \ \forall \ n \in \mathbb{N}.$$

 \therefore For n = 1, 2, 3, 4, 5, 6, we get lengths of the three sides of a right angled triangle whose longest side ≤ 100 .

e.g. When n = 1, sides are 3, 4, 5

and when n = 2, sides are 5, 12, 13 and so on.

The number of selections of 3, 4, 5 from the three cards by taking one from each is 3!.

:.
$$n(E) = 6(3!)$$

Hence,
$$P(E) = \frac{6(3!)}{100 \times 100 \times 100} = \frac{1}{100} \left(\frac{3}{50}\right)^2$$