Candidate Name	Class	Section
BLOOM Mather Olympiad (BMO) Question Paper 2024-2		Class 12
Total Questions: 50 + 5 (Tie-Bre	eaking Section)	
		Total Marks

Instructions

- There are 50 Multiple Choice Questions in this booklet having 4 options out of which ONLY ONE is correct.
- 2. There are two sections in the Question Paper; Section A having 40 Questions carrying 1 Mark each & Section B having 10 Higher Difficulty Order Questions carrying 2 Marks each.
- **3.** All questions are compulsory. There is **NO negative** marking for incorrect answers.
- **4.** Total time allotted to complete the paper is 60 minutes.
- **5.** Please fill in your details in the space provided on this page before attempting the paper.

OMR Sheet Instructions

- 1. Before starting the paper, fill in all the details in the OMR sheet.
- **2.** Additional 10 minutes will be provided to fill up the OMR sheet, before the start of the exam.
- **3.** Use HB Pencil to darken the circle of the correct Option in OMR sheet. The correct way to darken the circle in OMR sheet is shown below

- **4.** Use black or blue ball point pen/HB pencil to fill the information in the OMR sheet. Partially filled OMR sheet will not be checked.
- 5. Return the OMR sheet to the invigilator after the exam.

CODE #121

Bloom Mathematics Olympiad Class 12

Section A (1 Mark)

- **1.** Let $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Then, the number of bijective functions $f: A \rightarrow A$ such that f(1) + f(2) = 3 - f(3) is equal to
 - (a) 717
- (b) 720
- (c)763
- (d) 840
- **2.** Let $A = R \{3\}$ and $B = R \{1\}$. If $f : A \to B$, then, $f(x) = \frac{(x-2)}{(x-3)}$ is
 - (a) one-one and into
- (b) one-one and onto
- (c) many-one and into (d) many-one and onto
- **3.** If $f: R \to R$ and $g: R \to R$ are two functions such that f(x) = 2x - 3, $g(x) = x^{3} + 5$, then function $(fog)^{-1}(x)$ is equal to

 - (a) $\left(\frac{x+7}{2}\right)^{1/3}$ (b) $\left(x-\frac{7}{2}\right)^{1/3}$

 - (c) $\left(\frac{x-2}{7}\right)^{1/3}$ (d) $\left(\frac{x-7}{2}\right)^{1/3}$
- **4.** Let S be the set of all solutions of the equation $\cos^{-1}(2x) - 2\cos^{-1}(\sqrt{1-x^2}) = \pi$,

$$x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$
. Then, $\sum_{x \in S} 2\sin^{-1}(x^2 - 1)$ is equal to

- (a) $\pi 2\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$
- (b) $\frac{-2\pi}{3}$
- (c) 0
- (d) $\pi \sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$
- 5. If the domain of the function

$$f(x) = \sin^{-1}\left(\frac{x-1}{2x+3}\right)$$
 is $R - (\alpha, \beta)$, then $12\alpha\beta$ is

- equal to
- (a) 36
- (b) 32
- (c)40
- (d) 24

- **6.** For α , β , $\gamma \neq 0$, if $\sin^{-1} \alpha + \sin^{-1} \beta + \sin^{-1} \gamma = \pi$ and $(\alpha + \beta + \gamma)(\alpha - \gamma + \beta) = 3\alpha\beta$, then γ equals
 - (a) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (b) $\sqrt{3}$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{\sqrt{2}}$

- 7. The greatest and least values of $(\sin^{-1} x)^2 + (\cos^{-1} x)^2$ are respectively.
 - (a) $\frac{5\pi^2}{4}$ and $\frac{\pi^2}{8}$ (b) $\frac{\pi}{2}$ and $\frac{-\pi}{2}$
 - (c) $\frac{\pi^2}{4}$ and $\frac{-\pi^2}{4}$ (d) $\frac{\pi^2}{4}$ and 0
- **8.** The sum of possible values of x for

$$\tan^{-1}(x+1) + \cot^{-1}\left(\frac{1}{x-1}\right) = \tan^{-1}\left(\frac{8}{31}\right)$$
 is

- (a) $\frac{-32}{4}$
- (c) $-\frac{30}{4}$ (d) $-\frac{33}{4}$
- **9.** Let $M = \begin{bmatrix} 0 & -\alpha \\ \alpha & 0 \end{bmatrix}$, where α is a non-zero real

number and
$$N = \sum_{k=1}^{49} M^{2k}$$
. If $(I - M^2) N = -2I$,

then the positive integral value of α is

- (a) 2
- (b) 3

(c) 1

- (d) 4
- **10.** Let $A = \begin{bmatrix} 1+i & 1 \\ -i & 0 \end{bmatrix}$, where $i = \sqrt{-1}$.

Then, the number of elements in the set ${n \in \{1, 2, ..., 100\} : A^n = A\}}$ is

- (a) 10
- (c) 25
- (d) 30
- **11.** Let $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}, x \in R$ and $A^4 = [a_{ij}]$.
 - If $a_{11} = 109$, then a_{22} is equal to
 - (a) 6

- (b) 10
- (c) 15
- (d) 12

12. Let $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = 7A^{20} - 20A^{7} + 2I$, **18.** Let $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$. If | adj(adj(adj2A)) |

where I is an identity matrix of order 3×3 . If $B = [b_{ij}]$, then b_{13} is equal to

- (a) 900
- (b) 800
- (c) 910 (d) 810
- **13.** If the matrix $A = \begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix}$ satisfies

 $A(A^3+3I)=2I$, then the value of K is

- (a) $\frac{1}{2}$ (b) $-\frac{1}{2}$
- (c) 1
- **14.** Let $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$. If $A^{-1} = \alpha I + \beta A$, $\alpha, \beta \in R$,

where I is a 2 \times 2 identity matrix, then 4($\alpha - \beta$) is equal to

- (a) 8/3
- (b) 4
- (c) 2
- (d) 5
- **15.** Let A be a 3×3 matrix such that $A^2 - 5A + 7I = 0$

Statement I
$$A^{-1} = \frac{1}{7} (5I - A)$$

Statement II The polynomial $A^3 - 2A^2 - 3A + I$ can be reduced to 5(A - 4I). Then,

- (a) Both the statements are true.
- (b) Both the statements are false.
- (c) Statement I is true but Statement II is false.
- (d) Statement I is false but Statement II is true.
- **16.** Let α and β be real numbers. Consider a 3×3 matrix A such that $A^2 = 3A + \alpha I$. If $A^4 = 21A + \beta I$, then
 - (a) $\alpha = 1$
- (c) $\beta = 8$
- (d) $\beta = -8$
- **17.** If $A = \begin{bmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{bmatrix}$ and $\det \left(A^2 \frac{1}{2}I \right) = 0$,

then a possible value of α is

- $(a)\frac{\pi}{2}$
- (c) $\frac{\pi}{4}$

= $(16)^n$, then *n* is equal to

(a) 8

- (b) 10
- (c) 12
- (d) 9
- **19.** Let A(a, 0), B(b, 2b + 1) and C(0, b), $b \neq 0$, $|b| \neq 1$, be points such that the area of $\triangle ABC$ is 1 sq unit, then the sum of all possible values of a is
 - (a) $\frac{-2b}{b+1}$

- (c) $\frac{2b^2}{b+1}$ (d) $\frac{-2b^2}{b+1}$
- **20.** For what value of k,

$$f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x - 2)^2}, & x \neq 2 \\ k, & x = 2 \end{cases}$$
 is continuous

- (a) 6

(c)5

- (d)7
- **21.** Let $f:(-\infty,\infty)-\{0\}\to R$ be a differentiable function such that $f'(1) = \lim_{a \to \infty} a^2 f\left(\frac{1}{a}\right)$. Then,

 $\lim_{a \to \infty} \frac{a(a+1)}{2} \tan^{-1} \left(\frac{1}{a}\right) + a^2 - 2 \log_e a$ is equal to

- (a) $\frac{5}{2} + \frac{\pi}{8}$ (b) $\frac{3}{2} + \frac{\pi}{4}$
- (c) $\frac{3}{4} + \frac{\pi}{9}$
- (d) $\frac{3}{9} + \frac{\pi}{4}$
- 22. If the surface area of a cube is increasing at a rate of 3.6 cm²/sec, retaining its shape, then the rate of change of its volume (in cm³/sec), when the length of a side of the cube is 10 cm, is
 - (a) 18
- (b) 10

(c) 9

- (d) 20
- 23. The number of points, where the curve $y = x^5 - 20x^3 + 50x + 2$ crosses the X-axis, is
 - (a) 5
- (b) 4
- (c) 3
- (d)2

$$f(x) = \frac{4x^3 - 3x^2}{6} - 2\sin x + (2x - 1)\cos x$$

(a) increases in
$$\left[\frac{1}{2}, \infty\right)$$

(b) decreases in
$$\left[\frac{1}{2}, \infty\right)$$

(c) increases in
$$\left(-\infty, \frac{1}{2}\right]$$

(d) decreases in
$$\left(-\infty, \frac{1}{2}\right)$$

25. If
$$5f(x) + 4f\left(\frac{1}{x}\right) = x^2 - 2$$
, $\forall x \neq 0$ and

 $y = 9x^2 f(x)$, then y is strictly increasing in

$$(a)\left(0,\frac{1}{\sqrt{5}}\right)\cup\left(\frac{1}{\sqrt{5}},\infty\right)$$

$$(b)\left(-\frac{1}{\sqrt{5}},0\right)\cup\left(\frac{1}{\sqrt{5}},\infty\right)$$

$$(c)\left(-\frac{1}{\sqrt{5}},0\right)\cup\left(0,\frac{1}{\sqrt{5}}\right)$$

$$(d)\left(-\infty,\frac{1}{\sqrt{5}}\right)\cup\left(0,\frac{1}{\sqrt{5}}\right)$$

26. If $\int \frac{dx}{2\sin^2 x + 5\cos^2 x} = \frac{1}{\sqrt{10}} \tan^{-1} \left(\frac{a \tan x}{b} \right) + C$, then the value of $(a \cdot b)^2$ is

(a) $\sqrt{5}$

(b) $\sqrt{2}$

(c) $\sqrt{10}$

(d) 10

27. If
$$\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{a} \log(b + c)$$
, then the value of $(ab + c)$ is

(a) 2

(b) 3

(c) 4

(d) 10

28. If
$$\int \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} = (\tan x)^A + C(\tan x)^B + k$$
,

where k is a constant of integration, then A + B + C equals

(a) $\frac{16}{5}$

(b) $\frac{27}{10}$

(c) $\frac{7}{10}$

(d) $\frac{21}{5}$

29.
$$\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx = a \sin^{-1} \left(\frac{\sin x + \cos x}{b} \right) + C,$$

where c is a constant of integration, then the ordered pair (a, b) is equal to

(a)(3,1)

(c)(-1,3)

(d)(1, -3)

30. Let
$$\beta(m, n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$
, $m, n > 0$. If

 $\int_{a}^{b} (1-x^{10})^{20} dx = a \times \beta(b,c), \text{ then } 100(a+b+c)$ equals

(a) 2120

(b) 2012

(c) 1120

(d) 1021

31. If
$$\int_{0}^{1} \frac{1}{\sqrt{3+x} + \sqrt{1+x}} dx = a + b\sqrt{2} + c\sqrt{3}$$
, where,

a, b and c are rational numbers, then 2a + 3b - 4c is equal to

(c)7

(d)4

32. Consider the matrices :
$$A = \begin{bmatrix} 2 & -5 \\ 3 & m \end{bmatrix}$$
, $B = \begin{bmatrix} 20 \\ m \end{bmatrix}$

and $X = \begin{bmatrix} x \\ y \end{bmatrix}$. Let the set of all m, for which the

system of equations AX = B has a negative solution (i.e. x < 0 and y < 0), be the interval (a, b). Then, $8\int_{a}^{b} |A| dm$ is equal to

(a) 150

(b) 450

(c) 100

(d) 130

33. For what value of
$$k$$
, the area of the region bounded by the parabola $y^2 = 2x$ and the straight line $x - y = 4$ is $6k$?

(a) k = 1

(b) k = 2

(c) k = 3

(d) k = 4

34. What is the area of the region bounded by the curves
$$x = at^2$$
 and $y = 2at$ between the ordinates corresponding to $t = 1$ and $t = 2$?

(a) $\frac{28}{3}a^2$ sq units (b) $\frac{56}{3}a^2$ sq units

(c) $\frac{22}{3}a$ sq units (d) $\frac{56}{3}a$ sq units

- **35.** The area of the region bounded by y x = 2and $x^2 = y$ is equal to
 - (a) $\frac{16}{3}$ Sq units (b) $\frac{2}{3}$ Sq units

 - (c) $\frac{9}{2}$ Sq units (d) $\frac{4}{3}$ Sq units
- **36.** The temperature T(t) of a body at time t=0 is 160°F and it decreases continuously as per the differential equation $\frac{dT}{dt} = -K(T - 80)$, where K is a positive constant. If

 $T(15) = 120^{\circ}F$, then T(45) is equal to

- (a) 85°F
- (b) 95°F
- (c) 80°F
- (d) 90°F
- 37. Let α be a non-zero real number. Suppose $f: R \to R$ is a differentiable function such that f(0) = 2 and $\lim_{x \to \infty} f(x) = 1$. If $f'(x) = \alpha f(x) + 3$, for all $x \in R$, then $f(-\log_e 2)$ is equal to
 - (a) 5

(b) 9

- (c)7
- (d)3
- 38. Let the solution curve of the differential equation $x \frac{dy}{dx} - y = \sqrt{y^2 + 16x^2}$, y(1) = 3 be y = y(x). Then, y(2) is equal to
 - (a) 15
- (b) 11
- (c) 13
- (d) 17
- **39.** Let $f(x) = \int_0^x e^t f(t) dt + e^x$ be a differentiable function for all $x \in R$. Then, f(x) equals
 - (a) $2e^{(e^x-1)}-1$
 - (b) $e^{e^x} 1$
 - (c) $2e^{e^x} 1$
 - (d) $e^{(e^x-1)}$
- **40.** Let *f* be a differentiable function such that $x^2 f(x) - x = 4 \int_0^x tf(t) dt$, $f(1) = \frac{2}{3}$. Then, 18f(3) is equal to
 - (a) 210
- (b) 160
- (c) 180
- (d) 130

Section B (2 Marks)

- **41.** For any vector $\vec{a} = \vec{a}_1 \hat{i} + \vec{a}_2 \hat{j} + \vec{a}_3 \hat{k}$, with $10|\vec{a}_i| < 1, i = 1, 2, 3$, consider the following statements
 - (A) $\max\{|\vec{a}_1|, |\vec{a}_2|, |\vec{a}_3|\} \le |\vec{a}|$
 - (B) $|\stackrel{\rightarrow}{a}| \le 3 \max\{|\stackrel{\rightarrow}{a}_1|, |\stackrel{\rightarrow}{a}_2|, |\stackrel{\rightarrow}{a}_3|\}$
 - (a) Neither (A) nor (B) is true
 - (b) Both (A) and (B) are true
 - (c) Only (B) is true
 - (d) Only (A) is true
- **42.** Let $\vec{\alpha} = (\lambda 2)\vec{a} + \vec{b}$ and $\vec{\beta} = (4\lambda 2)\vec{a} + 3\vec{b}$ be two given vectors where vectors \vec{a} and \vec{b} are noncollinear. The value of λ for which vectors $\vec{\alpha}$ and β are collinear, is
 - (a) 4
- (b) -3
- (c)3
- (d) -4
- **43.** Let $\vec{a} = 2\hat{i} + \hat{i} + \hat{k}$ and \vec{b} and \vec{c} be two non-zero vectors such that $|\vec{a} + \vec{b} + \vec{c}| = |\vec{a} + \vec{b} - \vec{c}|$ and $\vec{b} \cdot \vec{c} = 0$. Consider the following two statements
 - $(A) | \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{\lambda} \stackrel{\rightarrow}{c} | \ge | \stackrel{\rightarrow}{a} |, \forall \lambda \in R$
 - (B) \overrightarrow{a} and \overrightarrow{c} are always parallel. Then,
 - (a) Neither (A) nor (B) is correct.
 - (b) Both (A) and (B) are correct.
 - (c) only (B) is correct.
 - (d) only (A) is correct.
- **44.** Let $\vec{a} = \alpha \hat{i} + 3\hat{i} \hat{k}$. $\vec{b} = 3\hat{i} \beta \hat{i} + 4\hat{k}$ and $\vec{c} = \hat{i} + 2\hat{j} - 2\hat{k}$ where $\alpha, \beta \in R$, be three vectors. If the projection of \overrightarrow{a} on \overrightarrow{c} is $\frac{10}{3}$ and $\vec{b} \times \vec{c} = -6\hat{i} + 10\hat{j} + 7\hat{k}$, then the value of $\alpha + \beta$ is equal to
 - (a) 3
- (b) 4
- (c) 5
- (d) 6

- **45.** If two straight line whose direction cosines are given by the relations l + m n = 0, $3l^2 + m^2 + cnl = 0$ are parallel, then the positive value of c is
 - (a) 6

(b) 4

- (c) 3
- (d) 2
- 46. If the shortest distance between the lines

$$L_{1}: \vec{r} = (2 + \lambda)\hat{i} + (1 - 3\lambda)\hat{j} + (3 + 4\lambda)\hat{k}, \ \lambda \in R$$

$$L_{2}: \vec{r} = 2(1 + \mu)\hat{i} + 3(1 + \mu)\hat{j} + (5 + \mu)\hat{k}, \ \mu \in R \text{ is } \frac{m}{\sqrt{n}}, \text{ where } \gcd(m, n) = 1, \text{ then the value of } m + n \text{ equals}$$

- (a) 387
- (b) 377
- (c) 384
- (d) 390
- **47.** Let $P(\alpha, \beta, \gamma)$ be the image of the point Q(1, 6, 4) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$.
 - Then, $2\alpha + \beta + \gamma$ is equal to
 - (a) 11
- (b) 12
- (c) 14
- (d) 10

- **48.** The probability that a relation R from $\{x,y\}$ to $\{x,y\}$ is both symmetric and transitive, is equal to
 - (a) $\frac{5}{16}$
- (b) $\frac{9}{16}$
- (c) $\frac{11}{16}$
- (d) $\frac{13}{16}$
- **49.** Let A and B be two non-null events such that $A \subset B$. Then, which of the following statements is always correct?
 - (a) P(A/B) = P(B) P(A)
 - (b) $P(A/B) \ge P(A)$
 - (c) $P(AB) \leq P(A)$
 - (d) P(A/B) = 1
- **50.** Let N denote the sum of the numbers obtained when two dice are rolled. If the probability that $2^N < N!$ is m / n, where m and n are coprime, then 4m 3n is equal to
 - (a) 10
- (b) 12
- (c) 6
- (d) 8

Tie-Breaking Section

Instructions

- **1.** This section consists of 5 questions.
- 2. The score achieved in this section will not be included in the total marks.
- 3. If overall marks of two or more students are same, winner will be decided based on the score in this section.
- 4. Participation in this section is optional and students may choose to attempt it or not.
- **1.** Let $f(x) = x^2 + xg'(1) + g''(2)$ and $g(x) = x^2 + xf'(2) + f''(3)$, then which option is correct?
 - (a) f'(1) = 4 f'(2)
- (b) g'(2) = 8 g'(1)
- (c) q''(2) + f''(3) = 4 (d) None of these
- **2.** If $f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx$, $(x \ge 0), f(0) = 0$ and $f(1) = \frac{1}{k}$, then the value of k is
 - (a)5

(b) 3

(c)2

- (d)4
- **3.** Let y = y(x), y > 0, be a solution curve of the differential equation $(1+x^2)dy = y(x-y) dx$. If y(0) = 1 and $y(2\sqrt{2}) = \beta$, then

- (a) $e^{\beta^{-1}} = e^{-2}(5 + \sqrt{2})$ (b) $e^{\beta^{-1}} = e^{-2}(3 + 2\sqrt{2})$
- (c) $e^{3\beta^{-1}} = e(3 + 2\sqrt{2})$ (d) $e^{3\beta^{-1}} = e(5 + \sqrt{2})$
- **4.** If the shortest distance between the straight lines 3(x-1) = 6(y-2) = 2(z-1) and $4(x-2) = 2(y-\lambda) = (z-3), \ \lambda \in R \text{ is } \frac{1}{\sqrt{38}}, \text{ then}$ the integral value of λ is equal to
 - (a) 3
- (b) 2
- (c) 5
- (d) -1
- **5.** Let $P(\alpha, \beta, \gamma)$ be the image of the point Q(3, -3, 1) in the line $\frac{x-0}{1} = \frac{y-3}{1} = \frac{z-1}{-1}$ and R be the point (2,5,-1). If the area of the ΔPQR is λ and $\lambda^2 = 14K$, then K equal to
 - (a) 18
- (b) 72
- (c) 36